
Learning acyclic rules based on Chaining Genetic Programming

Wing-Ho Shum, Kwong-Sak Leung
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong
Hong Kong

{whshum, ksleung}@cse.cuhk.edu.hk

Man-Leung Wong
Dept. of Computing & Decision Sciences

Lingnan University
Hong Kong

mlwong@ln.edu.hk

Abstract

Multi-class problem is the class of problems having more
than one classes in the data set. Bayesian Network (BN)
is a well-known algorithm handling the multi-class prob-
lem and is applied to different areas. But BN cannot han-
dle continuous values. In contrast, Genetic Programming
(GP) can handle continuous values and produces classifica-
tion rules. However, GP is possible to produce cyclic rules
representing tautologic, in which are useless for inference
and expert systems. Co-evolutionary Rule-chaining Genetic
Programming (CRGP) is the first variant of GP handling
the multi-class problem and produces acyclic classification
rules [16]. It employs backward chaining inference to carry
out classification based on the acquired acyclic rule set. It
can handle multi-classes; it can avoid cyclic rules; it can
handle input attributes with continuous values; and it can
learn complex relationships among the attributes. In this
paper, we propose a novel algorithm, the Chaining Genetic
Programming (CGP) learning a set of acyclic rules and to
produce better results than the CRGP’s. The experimen-
tal results demonstrate that the proposed algorithm has the
shorter learning process and can produce more accurate
acyclic classification rules.

1 Introduction

BN is a powerful network model, which represents a set
of attributes in the multi-class problem and provides the
probabilistic relationships among them. But it cannot han-
dle continuous values, they must be discretized and thus the
order information is lost [4, 14]. Heckerman et al. proposed
methods of learning a network that contains Gaussian distri-
butions [5]. Monti et al. used neural networks to represent
the conditional densities [13].

GP is a branch of evolutionary computation (EC). It is
applied to different areas, like shortest path finding, pattern
recognition, classification and clustering [3]. Teredesai el

al. described the Recurrent Genetic Programming handling
the on-line handwritten classification problem [17]. Kishore
et al. proposed a GP model to solve the multi-category pat-
tern classification problem [9]. Wilson’s XCS [18], XCSI
[19] and sUpervised Classifier System [2] are well-known
classification algorithms based on learning classifier sys-
tem. However, all of them cannot produce acyclic rules.

Acyclic rules are important and necessary for inference
and expert systems. No meaningful result can be inferred
from cyclic rules and they represent tautologic only. An
example of cyclic rules is,

if class 0 = 1, then class 2 = 3
if class 3 = 0, then class 0 = 1
if class 2 = 3, then class 3 = 0

we cannot infer the class 2’s values, as they ultimately
depend on themselves though a cycle of rules.

Shum et al. proposed the CRGP, which is the first EC
algorithm handling the multi-class problem [16]. It learns a
set of acyclic classification rules representing the relation-
ships among the attributes and it can handle input attributes
with continuous values.

In this paper, we propose the CGP to solve the multi-
class problem. Compared with the CRGP, it can learn more
accurate acyclic rules and has the shorter learning process.
The remaining parts of the paper are organized as follows.
We describe the proposed algorithm in the next section. The
experimental results are presented in Section 3. The sum-
mary appears in the last section.

2 The Proposed Algorithm

The problem addressed in this study is learning classifi-
cation rules without cycle in the inference process for the
multi-class problem. Each attribute of the problem is re-
garded as either an input attribute or a class. The relation-
ships among the attributes will be represented by rules.

9601-4244-0212-3/06/$20.00/©2006 IEEE

The CGP is a GP based on backward chaining [8]. It has
a population of rules. Unlike the CRGP, it has no migration;
it has no epoch; it has a co-operating scoring stage; and it
does not infer the classes’ values during the learning pro-
cess. The CGP has the lower computation complexity and
produces more accurate acyclic rules. The population is di-
vided into sub-populations, in which increase and maintain
the diversity of rules. Backward chaining can find out cy-
cles through the inference process and cyclic rules have to
be avoided.

2.1 Initialization of Population

The CGP employs the Michigan approach [7]. It
starts with a population, which in turn consists of n sub-
populations of rules, where n is equivalent to the number of
classes. Each sub-population is assigned to learn a differ-
ent class. For instance, sub − population0 learns class 0,
sub− population1 learns class 1 and so on.

The rules represent the relationships among the at-
tributes. They are of the form, < antecedent >→<
consequent >. The < antecedent > and <
consequent > are in the prefix form. The function set is
defined as F = {∧, >,≤,=, 6=}. An example of rule is
< ∧(= class1 1)(> attribute2 49) >→<= class2 0 >.

The sub-populations have the same and fixed number of
rules and they are initialized randomly.

2.2 Fitness Evaluation

The CGP uses a support-confidence based fitness func-
tion and token competition to evaluate the rules’ fitness
[1, 10]. The support measures the coverage of a rule. It
is the ratio of the number of data items classified correctly
by the rule to the total number of data items. The confi-
dence factor (cf) is the confidence of the consequent part to
be true when the antecedent part is satisfied, which reflects
the rule’s classification accuracy. It is calculated as the ratio
of the number of data items satisfying both of the antecedent
and consequent parts to the number of data items satisfying
the antecedent part only. The fitness function is defined as
follows:

fitness =
{

support, if support < min
support + cf part, otherwise

(1)

and cf part is

cf part = cf ∗ log(
cf

prob
) (2)

where cf is both/consq, prob is consq/total, min is the user-
defined threshold, both is the number of data items satis-
fying both of the antecedent and consequent parts, consq
is the number of data items satisfying the consequent part
only and total is the total number of data items.

2.3 Co-operation and Co-evolution

The sub-populations co-operate together through back-
ward chaining. Backward chaining is a well-known infer-
ential methodology. Given a class, some facts and some
rules, it forms backward chains of rules and proves if the
class can be satisfied.

Co-operating scoring stage occurs after the fitness eval-
uation and the cyclic relationships in the rules will be de-
tected and eliminated. The rules are assessed if they can
well co-operate with the others and co-operating scores are
then assigned. Those rules form no cycle with the others
and produce accurate inferential results will have the higher
co-operating scores.

Tables 1 and 2 show the pseudocodes of the co-operating
scoring and backward chaining procedures respectively.
The co-operating score is calculated as follows:

co− operating score =
∑

k

fitk (3)

where fitk is the fitness value of the kth rule in the back-
ward chain of rules.

In the beginning, all the rules’ co-operating scores are set
to 0. They are then assessed one by one. 1) The rule being
assessed becomes the first and only rule in the backward
chain of rules; 2) if the rule contains one or more classes
in the < antecedent >, a copy of the backward chaining
procedure will be invoked for each of the classes; 3) the
backward chaining procedure selects the rules inferring the
class value that is being looking for from the corresponding
sub-population and collect them as a pool; 4) in the pool,
a rule forming no cycle with the others in the backward
chain is selected by Roulette Wheel method, according to
their fitness value [11]. Higher fitness value, higher chance
to be selected; 5) if the selected rule further contains one
or more classes in the < antecedent >, another copy of
the backward chaining procedure will be invoked for each
of the classes; 6) if no rule in the pool can form no cy-
cle with the others in the backward chain, the rule selection
process will be ended; 7) after finished all the copies of the
backward chaining procedure, the co-operating score of the
backward chain is calculated by the co-operating scoring
function, Equation 3. It is the sum of the fitness values of
all the rules in the backward chain; and 8) check all the rules
in the backward chain if their co-operating score is smaller
than the backward chain one. If so, their co-operating score
will be updated to the latter one.

The backward chaining procedure selects the better
rules, instead of the best one to form backward chain.
Higher fitness value higher chance to be selected. If the
backward chaining procedure always selects the best rule,
the learning process would likely to stick into a local opti-
mal and the learning performance is likely heavily degraded

961

Table 1. The pseudocode of the Co-operating Scoring Procedure.
1. set i = 0.
2. while i < the number of sub-populations,
2.1 set j = 0.
2.2 while j < the number of rules of sub− populationi,
2.2.1 set the co-operating score of the jth rule in sub− populationi = 0
2.2.2 j = j + 1.
2.3 i = i + 1.
3. set i = 0.
4. while i < the number of sub-populations,
4.1 set j = 0.
4.2 while j < the number of rules of sub− populationi,
4.2.1 the jth rule in sub− populationi becomes the first and only rule in the backward chain of rules.
4.2.2 if the jth rule contains one or more classes in its < antecedent >,
4.2.2.1 a copy of the backward chaining procedure is invoked for each of the classes.
4.2.3 calculate the co-operating score of the backward chain by the co-operating scoring function.
4.2.4 set k = 0.
4.2.5 while k < the number of rules in the backward chain.
4.2.5.1 if the co-operating score of the kth rule in the backward chain < the co-operating score of

the backward chain
4.2.5.1.1 set the co-operating score of the kth rule in the backward chain = the co-operating score

of the backward chain
4.2.5.1.2 k = k + 1.
4.2.6 j = j + 1.
4.3 i = i + 1.

Table 2. The pseudocode of the Backward Chaining Procedure.
input: the class and the class value being looking for

the backward chain of rules
1. set i = 0
2. set j = the class number of the class being looking for.
3. set the pool of rules = {}.
4. while i < the number of rules of sub− populationj ,
4.1 if the ith rule in sub− populationj infers the class value being looking for,
4.2 add the ith rule into the pool.
4.3 i = i + 1.
5. if the pool 6= {},
5.1 select a rule from the pool by Roulette Wheel method according to the fitness value
5.2 remove the selected rule from the pool.
5.3 while the selected rule form cycle with the others in the backward chain and the selected rule 6= NULL
5.3.1 if the pool 6= {},
5.3.1.1 select another rule from the pool by Roulette Wheel method, according to the fitness value
5.3.1.2 remove the selected rule from the pool.
5.3.2 else
5.3.2.1 set the selected rule to NULL.
5.4 if the selected rule 6= NULL,
5.4.1 the selected rule is appended to the backward chain.
5.4.2 if the selected rule further contains one or more classes in the < antecedent >,
5.4.2.1 another copy of backward chaining procedure is invoked for each of the classes

962

Figure 1. Examples of backward chain of rules.

by an accidentally poor performed sub-population. Figure
1 shows two examples of backward chain of rules. The
left backward chain is longer and its rules have higher fit-
ness values, thus the co-operating score of the backward
chain is higher. The only condition stopping the right back-
ward chain to grow is cycle. Since there is no suitable rule
that would form no cycle with the others in the backward
chain, the chain is stopped to grow and thus has smaller co-
operating score.

The co-operating score of the backward chain is the sum
of the fitness values of all the rules in the chain, which re-
flects the chain’s overall performance. More better rules
higher the co-operating score. The rules only keep one co-
operating score, regardless the number of backward chains
that they have participated in, i.e. only the highest one is
kept.

Therefore, the rules’ co-operating scores memorize the
best overall performance that the rules have achieved with
the others. Those rules that have participated in a long back-
ward chain of better rules will have the higher co-operating
scores. In result, the co-operating scoring stage encourages
well co-operated acyclic rules.

The sub-populations co-evolve together. Initially, the
sub-populations only have poor-performed rules, so it is
difficult to form backward chain with higher co-operating
score. As the learning process goes on, the quality of the
rules improves and better backward chain becomes possi-
ble.

2.4 Genetic Operators and Reproduction

The CGP employs four canonical genetic operators of
GP to reproduce offsprings; they are the crossover, the mu-
tation, the reproduction and the dropping conditions [12].
Firstly, the rules are selected by Roulette Wheel method,
according to their co-operating scores [11]. Higher co-
operating score higher chance to be selected. Secondly, the
selected rules are applied with one of the genetic operators,
to reproduce offsprings. The rules can breed with the oth-
ers in the same sub-population only. Then, all the rules and
offsprings in the same sub-population compete with each

Figure 2. The architecture of the CGP.

other. The best half of them is preserved as the new sub-
population for the next generation.

When the maximum number of generations is met, the
learning process is terminated and all of the rules in the
population are collected together as the resultant rule set.
Figures 2 and 3 show the architecture and the flow of the
CGP respectively.

3 Experiments

3.1 Experimental setting

We compared the CGP with the CRGP, the Multi-
population Genetic Programming (MGP) and the GP. The
maximum number of generations of the CGP is equalvent
to the product of the number of generations in an epoch and
the number of epochs of the CRGP. The MGP is a multi-
population GP. It has no migration and no backward chain-
ing. The GP is a canonical GP, the number of individuals in
the population is equalvent to the total number of individu-
als of all populations of the CRGP and the maximum num-
ber of generations is equalvent to the product of the number
of generations in an epoch and the number of epochs of the
CRGP. In short, all the algorithms have the same total num-

963

Figure 3. The flow of the CGP.

ber of generations and the same total number of individuals.
We implemented the CGP, the CRGP, the MGP and GP in
C++. They have the same implementation details, operating
parameters and operating environment.

3.2 Data Sets

We evaluated the CGP on two real-life data sets. The first
one, ”Asia” is from UCI Machine Learning Repository [6].
It has 7 attributes and 1000 data items. Figure 4 shows the
relationships among the attributes of the Asia. The second
one, ”Fracture” is from the Orthopaedie Department of the
Prince of Wales Hospital of Hong Kong. Figure 5 shows
the relationships among the attributes of the Fracture. It
consists of records of children with limb fractures admitted
to the hospital in the period 1984-1996. The Fracture was
used in [15]. It has 6 attributes and 4884 data items. The
data items were originally recorded in text format, we pre-
processed them to remove the typo-errors and those data
items having missing value were removed, since it is not
viable to replace them with average values.

3.3 Evaluation Methods

The algorithms were evaluated in term of the inferential
accuracy. After finished the learning process, the rules pro-

Figure 4. The relationships among the at-
tributes of the Asia.

Figure 5. The relationships among the at-
tributes of the Fracture.

964

duced by the algorithms were collected together as the re-
sultant rule set as the typical evaluation method of EC [15].
Then the rule sets were used to infer the values of the classes
though the backward chaining inference, in other words, the
classes’ values were inferred by the input attributes’ values
though the inference process. Finally, we compared the in-
ferred values with the real ones in the data sets and calcu-
lated the inferential accuracies. We also compared the infer-
ential accuracies among the algorithms by T-test. Smaller
T-test values more significance of the improvements (and
less chances were caused by stochastic effect). The T-test
values were calculated by Microsoft Excel 2003 SP1.

Since cyclic rules cannot be fired in the inference process
(and expert systems) and the MGP, the GP and the other
algorithms are possible to produce cyclic rules, their infer-
ential accuracies should be lower than the CGP’s and the
CRGP’s.

We compared the computation times between the CGP
and the CRGP as well. Since they are different in archi-
tecture and flow, we cannot compare their learning perfor-
mance in term of the number of evaluations. Instead, the
number of seconds of a run is used.

The data sets were split into two parts. 66% of the data
items were used for the learning, the rest of them were used
for the evaluation. For all of the algorithms, we specified the
input attributes. All the results are based on 10 independent
runs.

3.4 The Asia results

The values of the number of epochs, the maximum num-
ber of generations, the number of rules, the maximum depth
of a rule, the crossover rate, the mutation rate, the reproduc-
tion rate and the dropping condition rate are 100, 10, 10, 15,
0.6, 0.4, 0 and 0.1 respectively.

Tables 3 and 4 show the inferential accuracy results and
the comparisons respectively. The values in between paren-
thesis are the best results of the 10 independent runs. The
first columns in the tables show the sum of the inferential
accuracies of all the classes. They show both of the CGP
and the CRGP outperformed than the others, especially for
classes 1, 2 and 3. It was because both of the MGP and
the GP produced a lot of cyclic rules which could not be
fired in the inference process (and expert systems). Further-
more, as their rules are difficult to form longer and better
backward chains of rules and infer all the classes’ values
then, they cannot achieve better inferential accuracy for all
of the classes simultaneously, but some of them. Different
runs very different inferential accuracies for the classes, i.e.
their results are very fluctuated. In result, their best and av-
erage results are quite different with each other. Besides,
the CGP did better than the CRGP, it got 22% improvement
over the CRGP on the sum of the inferential accuracies.

Table 9. Computation time comparison re-
sults between the CGP and the CRGP.

Asia Fracture

CGP (second) 58.49 66.74
CRGP (second) 197.36 364.94
Improvement(%) 70.36 81.71
T-test 5.70 ∗ 10−3 2.54 ∗ 10−4

Table 5 shows the T-test comparison results. As the t-
test values are very small, the improvements of the CGP
over the others are significant.

3.5 The Fracture results

The values of the number of epochs, the maximum num-
ber of generations, the number of rules, the maximum depth
of a rule, the crossover rate, the mutation rate, the reproduc-
tion rate and the dropping condition rate are 100, 10, 10, 15,
0.4, 0.4, 0.1 and 0.1 respectively.

Tables 6 and 7 show the inferential accuracy results and
the comparisons respectively. Similar to the ones of the
Asia, they show both of the CGP and the CRGP did bet-
ter than the others, for all of the classes and the CGP got
better than the CRGP as well. Table 8 shows the T-test com-
parison results. It shows the improvements of the CGP are
significant and were not simply caused by stochastic effect.

Table 9 shows the computation time comparisons be-
tween the CGP and the CRGP. It shows the CGP got the sig-
nificant less computation time than the CRGP. Inference is
a time consuming process, unlike the CRGP, the CGP does
not infer the classes’ values during the learning process and
thus a large portion of the computation time is saved.

The experimental results show the multi-class problem
cannot be solved by traditional classification algorithms,
like the MGP and the GP; Shum et al. also demonstrated
that even the sophisticated decision tree algorithm, C5.0
cannot manage this problem [16]. They are likely to pro-
duce cyclic results representing tautologic. The CGP and
the CRGP are the only EC algorithms producing acyclic
rules for inference and expert systems. The results also
show the CGP outperformed than the CRGP, both in terms
of the inferential accuracy and the computation time.

4 Summary

In this paper, we propose a novel algorithm, the CGP to
learn a set of acyclic rules. It has the shorter learning pro-
cess and can produce more accurate acyclic classification
rules. Unlike BN, it can handle input attributes with contin-
uous values. We evaluated its performance on two real-life

965

Table 3. Inferential accuracy results for the Asia.
sum (%) class 0 (%) class 1 (%) class 2 (%) class 3 (%) class 4 (%) class 5 (%)

CGP 488.52 (496.06) 99.09 (99.09) 94.64 (94.64) 92.73 (92.73) 88.12 (88.18) 53.97 (60.91) 60.97 (61.52)
CRGP 399.64 (495.70) 94.76 (96.70) 72.24 (94.55) 63.79 (90.24) 62.33 (89.70) 54.21 (64.24) 52.30 (57.27)
MGP 313.39 (418.48) 98.67 (99.70) 64.94 (90.60) 34.27 (90.00) 14.85 (14.85) 51.15 (66.36) 49.52 (56.97)
GP 309.61 (421.82) 98.55 (99.09) 66.55 (93.33) 38.36 (92.42) 13.09 (13.64) 43.33 (62.12) 49.73 (61.21)

Table 4. Comparison results between the CGP and the others for the Asia.
sum (%) class 0 (%) class 1 (%) class 2 (%) class 3 (%) class 4 (%) class 5 (%)

CGP and CRGP 22.24 (0.07) 4.57 (-0.60) 29.61 (-0.96) 45.37 (2.75) 41.37 (-1.69) -0.44 (-5.10) 16.57 (7.40)
CGP and MGP 55.88 (18.54) 0.43 (-0.06) 44.19 (3.34) 170.56 (3.03) 493.47 (493.87) 5.50 (-8.22) 23.13 (7.98)
CGP and GP 57.78 (17.60) 0.55 (0.00) 40.71 (0.32) 141.70 (0.32) 573.14 (546.67) 24.55 (-1.95) 22.60 (0.50)

Table 5. T-test comparison results between the CGP and the others for the Asia.
class 0 class 1 class 2 class 3 class 4 class 5

CGP and CRGP 3.14 ∗ 10−3 0.08 5.97 ∗ 10−4 1.53 ∗ 10−34 0.30 1.97 ∗ 10−5

CGP and MGP 2.56 ∗ 10−3 0.03 2.46 ∗ 10−4 1.21 ∗ 10−45 0.39 1.85 ∗ 10−4

CGP and GP 3.14 ∗ 10−3 0.03 5.79 ∗ 10−4 5.59 ∗ 10−43 0.37 1.07 ∗ 10−4

Table 6. Inferential accuracy results for the Fracture.
sum (%) class 0 (%) class 1 (%) class 2 (%) class 3 (%) class 4 (%)

CGP 239.55 (263.40) 67.85 (73.33) 24.58 (32.69) 38.97 (42.12) 72.80 (74.88) 35.35 (40.38)
CRGP 220.43 (255.65) 63.08 (72.52) 27.29 (32.82) 36.79 (41.56) 60.98 (71.09) 32.30 (37.66)
MGP 77.08 (191.50) 19.71 (72.15) 5.42 (25.31) 5.64 (24.07) 27.94 (43.98) 18.37 (25.99)
GP 55.99 (187.03) 10.83 (71.84) 4.94 (22.95) 8.06 (18.92) 19.73 (45.97) 12.43 (27.36)

Table 7. Comparison results between the CGP and the others for the Fracture.
sum (%) class 0 (%) class 1 (%) class 2 (%) class 3 (%) class 4 (%)

CGP and CRGP 8.67 (3.03) 7.56 (1.11) -9.91 (-0.37) 5.92 (1.34) 19.38 (5.32) 9.45 (7.25)
CGP and MGP 210.78 (37.54) 244.26 (1.63) 353.95 (29.17) 591.09 (75.00) 160.55 (70.24) 92.37 (55.37)
CGP and GP 327.82 (40.83) 526.76 (2.07) 397.24 (42.43) 383.60 (122.62) 268.90 (62.89) 184.33 (47.62)

Table 8. T-test comparison results between the CGP and the others for the Fracture.
class 0 class 1 class 2 class 3 class 4

CGP and CRGP 1.71 ∗ 10−4 1.73 ∗ 10−5 6.00 ∗ 10−8 1.26 ∗ 10−7 1.68 ∗ 10−4

CGP and MGP 6.61 ∗ 10−5 5.94 ∗ 10−6 1.59 ∗ 10−8 2.93 ∗ 10−7 2.31 ∗ 10−5

CGP and GP 1.70 ∗ 10−4 1.73 ∗ 10−5 6.17 ∗ 10−8 2.67 ∗ 10−7 6.05 ∗ 10−5

966

data sets. The experimental results show the CGP outper-
formed than the CRGP, the MGP and the GP. With the flex-
ibility of GP, the CGP can learn complex relationships that
cannot be handled by BN.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of otems in large
databases. In Proceedings of the 1993 International
Conference on Management of Data, pages 207–216,
1993.

[2] Ester Bernad-Mansilla and Josep M. Garrell-Guiu.
Accuracy-based learning classifier systems: Models,
analysis and applications to classification tasks. Evo-
lutionary Computation, MIT Press, 11:209 – 238,
1998.

[3] Alex A. Freitas, editor. Data Mining and Knowledge
Discovery with Evolutionary Algorithms. Springer,
2002.

[4] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers. In Machine Learning, pages 131–
163, 1998.

[5] D. Heckerman and D. Geiger. Learning bayesian net-
works: a unification for discrete and gaussian do-
mains. In Proceedings of the eleventh conference on
uncertainty in artificial intelligence, pages 274–284,
1995.

[6] S. Hettich, C.L. Blake, and C.J. Merz. Uci repository
of machine learning databases, 1998.

[7] JH Holland. Escaping brittleness: the possibilities of
general-purpose learning algorithms applied to paral-
lel rule-based systems. In Machine Learning, pages
593–623, 1986.

[8] Verlyn M. Johnson and John V. Carlis. Sharing and
reusing rules: A feature comparison of five expert sys-
tem shells. In IEEE Expert: Intelligent Systems and
Their Applications, pages 3–17, 1994.

[9] J.K. Kishore, L.M. Patnaik, V. Mani, and V.K.
Agrawal. Application of genetic programming for
multicategory pattern classification. In IEEE Transac-
tions on Evolutionary Computation, pages 242–258,
2000.

[10] L. So K.F. Yam K.S. Leung, Y. Leung. Rule learn-
ing in expert systems using genetic algorithm: 1, con-
cepts. In Proceedings of the 2nd International Con-
ference on Fuzzy Logic and Neural Networks (Iizuka,
Japan), pages 201–204, 1992.

[11] Z. Michalewic, editor. Genetic Algo-
rithms+DataStructures=Evolution Programs. New
York: Springer-Verlag, 1994.

[12] R.S. Michalski. A theory and methodology of induc-
tive learning. In J.G. Carbonell R.S. Michalski and
T.M. Mitchell, editors, Machine Learning - An Ar-
tificial Intelligence Approach, chapter 4. Los Altos,
Calif., 1983.

[13] S. Monti and G. F. Cooper. Learning bayesian be-
lief networks with neural network estimators. In
Advances in Neural Information Processing Systems,
pages 579–584, 1997.

[14] P. Myllymaki, T. Silander, H. Tirri, and P. Uronen.
B-course: a web service for bayesian data analysis.
In Proceedings of the 13th International Conference
on Tools with Artificial Intelligence, pages 247–256,
2001.

[15] Ngan P. S., Wong M. L., Lam W., Leung K. S., , and
J. C. Y. Cheng. Medical data mining using evolution-
ary computation. In Artificial Intelligent in Medicine,
Special Issue On Data Mining Techniques and Appli-
cations in Medicine, pages 73–96, 1999.

[16] Wing-Ho Shum, Kwong-Sak Leung, and Man-Leung
Wong. Co-evolutionary rule-chaining genetic pro-
gramming. In Intelligent Data Engineering and
Automated Learning - IDEAL 2005: 6th Interna-
tional Conference. Lecture Notes in Computer Sci-
ence., pages 546–554, 2005.

[17] A. Teredesai, V. Govindaraju, E. Ratzlaff, and J. Sub-
rahmonia. Recurrent genetic programming. In IEEE
International Conference on Systems, Man and Cyber-
netics, page 5, 2002.

[18] S.W. Wilson. Generalization in the xcs classifier sys-
tem. In Genetic Programming: Proceedings of the
Third Annual Conference, pages 665–674, 1998.

[19] S.W. Wilson. Mining oblique data with xcs. In In-
ternational Workshop on Learning Classifier Systems,
page Extended Abstract, 2000.

967

