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Abstract

One objective of data mining is to discover parent-child
relationships among a set of variables in the domain. More-
over, showing parents’ importance can further help to im-
prove decision makings’ quality. Bayesian Network (BN)
is a useful model for multi-class problems and can illus-
trate parent-child relationships with no cycle. But it cannot
show parents’ importance. In contrast, decision trees state
parents’ importance clearly, for instance, the most impor-
tant parent is put in the first level. However, decision trees
are proposed for single-class problems only, when they are
applied to multi-class ones, they are likely to produce cy-
cles representing tautologic. In this paper, we propose to
use MDL Genetic Programming (MDLGP) and Functional
Dependency Network (FDN) to learn a set of acyclic deci-
sion trees [9]. The FDN is an extension of BN; it can han-
dle all of discrete, continuous, interval and ordinal values;
it guarantees to produce decision trees with no cycle; its
learning search space is smaller than decision trees’; and it
can represent higher-order relationships among variables.
The MDLGP is a robust Genetic Programming (GP) pro-
posed to learn the FDN. We also propose a method to de-
rive acyclic decision trees from the FDN. The experimental
results demonstrate that the proposed method can success-
fully discover the target decision trees, which have no cycle
and have the accurate classification results.

1 Introduction

Decision tree is a powerful classification model for
single-class problems and can show parents’ importance.
Well-known decision tree learning algorithms include OC1,
Ltree, C4.5 and C5.0 [7, 8, 1, 5]. Forests of decision
trees were also proposed and were applied to different areas
[11, 4]. However, all of them cannot manage multi-class

Figure 1. The Bayesian Network for Asia.

problems and thus have no method to avoid cycles.
Figure 6 shows an example of decision trees with cycles.

From the decision trees, it is unable to deduce history and
biology’s values, as they are determined by each other, i.e.
several cycles exist and thus, the decision trees are useless
for decision makings.

In contrast, BN were proposed for multi-class problems
and represent acyclic parent-child relationships with, but
cannot illustrate parents’ importance.

Figure 1 shows the BN for the benchmark data set, Asia
[3]. For instance, it illustrates the variable, Dyspnea has
two parents, Tuberculosis or Cancer and Bronchitis,
but cannot show which one is more important (or if they
have the same importance). If medical doctors can know
which one is more important, they would able to make bet-
ter decisions. Therefore, showing parents’ importance can
help to improve decision makings’ quality.

Furthermore, BN can handle discrete values only, contin-
uous, interval and ordinal ones must be discretized and thus,
the order information is lost. The disability to handle con-
tinuous, interval and ordinal values increases the network
complexity; the relationships represented by BN become
less understandable; and higher-order relationships among
variables cannot be learnt.

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00  © 2006



Figure 2. (Upper) The Bayesian Network for
Programme Selection. (Lower) The Func-
tional Dependency Network for Programme
Selection.

We propose to use the MDLGP and the FDN to learn
acyclic decision trees [9]. The FDN is an extension of BN,
it can handle all of discrete, continuous, interval and ordi-
nal values and can also represent higher-order relationships
among variables. Like BN, it represents acyclic parent-child
relationships and has smaller learning search space than de-
cision trees’ [10].

Consider an university programme selection problem
that has two ordinal variables, a high school student would
choose a science programme if he/she got a better grade in
biology; he/she would study an art programme if he/she has
done better in history; otherwise, he/she would study one
randomly. Figure 2 (upper) shows the BN representing the
problem. The largest conditional table on the right states
history and biology are the parents of art or science.
Since BN cannot compare the course grades directly, it enu-
merates all the instances of the combination of the subject
grades and calculates the corresponding probabilities. Al-
though there are only two subjects, the conditional tables
are large and have a lot of entries, i.e. the network complex-

ity is high and the meanings of the relationships are unclear
and incomprehensible.

Figure 2 (lower) shows the FDN for the programme
selection problem. The FDN has a functional node,
history > biology. It represents the grade comparison be-
tween the subjects and its conditional table has only one
entry specifying the function >. > returns 1 if the first ar-
gument is greater than the second one; if the two arguments
are equal, it returns 0; otherwise, -1 is returned. With the
functional node, the FDN reduced the number of entries
in the conditional tables from 6 + 6 + 62 ∗ 2, i.e. 84 to
6 + 6 + 3 ∗ 2 + 1, i.e. 19, the network complexity is signifi-
cantly reduced. By realizing the meaning of >, it is easy to
understand and interpret the relationships; and the relation-
ships can be expressed in rule and tree formats easily.

The MDLGP is a GP proposed to learn the FDN, which
uses an extended MDL to evaluate candidate solutions. It
does not employ any knowledge-guided nor application-
oriented operator, thus it is robust and easy to be replicated.

We also propose a procedure to build acyclic decision
trees from the FDN. The paper is organized as follows. We
introduce the FDN in Section 2.1, followed by descriptions
of the MDLGP and the decision tree building procedure.
The experimental results are presented in Section 3. A con-
clusion is given in the last section.

2 The Algorithm

2.1 The Functional Dependency Network

The FDN is a directed acyclic network. A variable node
denotes a variable in the domain and a directed link rep-
resents the dependency relationships between the child and
the parents. Each variable node has a conditional table spec-
ifying the probability of each particular value of the variable
node given an instantiation of the parents. For each variable
node with no parent, the conditional table specifies the pri-
ori probability distribution.

The FDN has one more type of nodes, functional node
which represents functions of variables. The functions can
have any number of arguments and any number of nesting
levels. Their conditional tables have only one entry, which
specifies the functions producing the value of the functional
node given an instantiation of its parents.

Similar to BN, a variable node can handle discrete values
only. If a continuous functional node has a variable node as
its child, discretization is needed.

A continuous variable node can either have another vari-
able node or a continuous functional node or both as its chil-
dren. If the child is a variable node, discretized values are
produced; if the child is a continuous functional node, con-
tinuous values are generated according to a Gaussian dis-
tribution function. Each entry in the conditional table rep-
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resents an interval. To generate a continuous value, 1) se-
lecting an entry according to the probability, 2) according to
Gaussian distribution function, pick up a continuous value
randomly given the mean and the standard deviation of the
interval.

2.2 The MDL Genetic Programming

2.2.1 The Population

The MDLGP is designed to learn the FDN. It has a popu-
lation of individuals. Individuals are represented as trees
and each individual encodes one network. Individuals
are of the form, (< parents >→< child >)1.....(<
parents >→< child >)y where y ∈ Z+. We call each
of the (< parents >→< child >) as a fragment, which
represents the relationships between the < parents > and
the < child >. < parents > and < child > are in the pre-
fix form. < parents > denotes one or more parents and a
parent can either be a variable node or a functional node.
< child > is a variable node. Different fragments can
have the same < child >. The fragments containing func-
tional nodes also represent the variables in the functions.
For instance, the individual representing the FDN in Figure
2 (lower) is ((> history biology) → art or science)

The MDLGP uses a grammar to prevent the closure
problem [9]. It translates an individual into a network frag-
ment by fragment. Individuals may carry invalid fragments,
which would create cycles in the network. The MDLGP
validates them one by one, starting from the leftmost one.
If the fragment is valid, it would be translated as links and
nodes into the network. If it would create cycle in the net-
work, it would be simply ignored.

The population has a fixed number of individuals and the
initial population is generated randomly.

2.2.2 Evaluation, Selection and Reproduction

The MDLGP uses the extended MDL to evaluate individu-
als and the smaller MDL score is the better [9].

It selects individuals for reproduction through tourna-
ment competition. Each individual competes with a number
of randomly chosen individuals. According to the number
of winning competitions, fitter individuals are selected by
Roulette Wheel method [6].

The MDLGP has four genetic operators, they are the mu-
tation, the crossover, the insertion and the deletion [9]. All
the offsprings have to conform the grammar.

After the reproduction, the total number of individuals
and offspring is double. To keep the population size re-
main constant, the worst half of them are destroyed. Then,
the extinction is used to further promote the diversity of the
population [2].

2.3 Decision Trees Building

Once the maximum number of generations is met, the
learning process is stopped and the fittest individual in the
population is chosen as the final solution. Then, decision
trees are derived from it.

Firstly, for each of the variables having parents, build a
decision tree table recursively. The decision tree tables are
very similar to the conditional ones, except the entries in-
side are ordered according to the information gain calcula-
tions and entries in the same column are no longer necessary
to represent the same parent. If a set T of data items is par-
titioned into disjoint exhaustive classes c1, c2..., cj on the
basis of the value of a variable, then the information needed
to identify the class of an element of T is,

info(T ) =
n∑

i=1

Ti

T
∗ info(Ti) (1)

where j is the number of classes and

info(Ti) = −
∑

j

ci

Ti
∗ log(

ci

Ti
) (2)

To build the decision tree tables, for each of the variables
having parents, 1) starting with a empty decision tree table
and setting the first column as the working one; 2) setting
the whole data set as the working data partition and setting
all the rows are the working ones; 3) calculating the parents’
info(T ) and selecting the one with the highest value; 4)
if the selected parent is not the only one left, partition the
working data partition on the basis of the selected parent’s
values and then to correspond to the new data partitions,
divide the working rows evenly. Otherwise goto the step 7;
5) for each of the new data partitions, put the selected parent
and the value into the entries in the working column and the
corresponding working rows; 6) for each of the new data
partitions, set the next column and the corresponding rows
as the working ones. Then, go back to the step 3 without
the selected parent; 7) calculating the possibilities for the
class’s values.

Secondly, the decision trees are derived from the deci-
sion tree tables. For each of the decision tree tables, 1)
starting with a empty decision tree, setting the first level as
the working one; 2) setting the first column of the decision
tree table as the working one; 3) for each set of consecutive
entries containing the same parent and the same value in the
working column, add a node to the working level; 3) if the
new nodes are not in the first level, then connect them to
theirs parents, which are the nodes represented by the en-
tries in the same rows but the previous column; 4) if it is not
the last column, then set the next column and the next level
as the working ones and go back to the step 3; 5) for each
of the rows, among the class’s values, select the one with
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the highest possibility as the leaf; 6) if there are more than
one class values having the highest probability, select one
randomly; and 7) finally, neighbor branches that having the
same parent, the same variables and the same class’s values
are combined, to produce a concise and more understand-
able decision tree.

Figure 3 shows an example of the decision tree build-
ing. The uppermost table shows the characteristics of a syn-
thetic data set, which has 2 variables, 400 data items and 1
class. Both of variable A and variable B are the parents
of class. For instance, the table shows there are 101 data
items with variable A is 1 and class is 0. Firstly, a deci-
sion tree table is built recursively. According to the infor-
mation gain calculations, variable B is the most important
parent and thus, it and its values are put into the first col-
umn. Next, for each of the values, we determine the second
most important parent. Since variable A is the only one
left, it and its values are put into the corresponding entries
in the second column. Thirdly, the decision tree is derived
from the decision tree table and the parent in the first col-
umn becomes the node in the first level. Then, for each set
of consecutive entries containing the same parent and the
same value in the column, child nodes are added, which are
those represented by the entries in the same rows but the
next column. When there is no more parent left, the leaves,
i.e. class and its values are added. For each of the branches,
the class’s value with the highest probability is selected. If
there are more than one class’s values having the highest
probability, one is selected randomly. For example, when
variable A is 0 and variable B is 1, the probabilities to
have class is 0 and is 1 are the same, i.e. 0.5, so either one,
i.e. 0 is chosen. Finally, neighbor branches having the same
parent, the same variables and the same class’s values are
combined. For instance, in the branch of variable B is 0,
both of the class’s values are 0 when variable A is 0 and
is 1, so they are merged.

3 Experimental results

3.1 Experimental settings

3.1.1 Data Sets

We evaluated the proposed method on two data sets. The
first one is Monk 1 from UCI machine learning reposi-
tory [3]. It has 7 nominal variables, 556 data items and
variable 6 is the class.

The other one is Programm Selection used in [9]. It con-
sists of 7 continuous, ordinal and discrete variables. It has
1000 data items and history, biology and art or science
are the classes.

Figure 3. An example of the decision tree
building.

3.1.2 Evaluation Methods

In the experiments, the MDLGP learnt both of the FDN and
BN. Then, decision trees are derived from the discovered
networks. Lastly, the discovered decision trees were com-
pared with those learnt by the Ltree and the C4.5.

The Ltree and the C4.5 can only learn a decision tree for
one class each time, so we executed them ten times, for each
of the classes.

Furthermore, the FDN and BN can determine which
variables are the classes, but we have to specify them for
the Ltree and the C4.5.

The data sets were split into two parts. 66% of them
were used for the learning and the rest were used for the
evaluation. The decision trees were evaluated if they have
cycles and were also compared in terms of the classification
accuracy based on 10 independent runs.

3.2 Results for Monk 1

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.7, 10, 0.3, 0.3, 0.3 and 0.1
respectively.

Table 1 shows the results for Monk 1. The FDN has got
the highest classification accuracy. As the BN, the Ltree
and the C4.5 could not learn the higher-order relationship
in the data set, they got the lower accuracies and the more
complicated decision trees. Moreover, since decision tree
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Table 1. Results for Monk 1.
Average(%) Best(%) Worst(%) Standard Deviation

MDLGP with FDN 96.28 98.36 94.36 0.01
MDLGP with BN 95.79 97.81 93.99 0.01
Ltree 91.91 100.00 81.97 0.07
C4.5 93.92 100.00 83.60 0.05

learning has larger search space, the Ltree and the C4.5 have
stuck into the local optimum and got the worst results.

3.3 Results for Programme Selection

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.7, 10, 0.3, 0.3, 0.3 and 0.1
respectively.

Table 2 shows the results for Programm Selection. The
FDN has got the best result for art or science and the sec-
ond highest accuracies for history and biology. Since both
of the BN and the C4.5 could not represent the higher-order
relationships in the data set, they got the worse results. Be-
sides, although the Ltree had the best results for history
and biology, it produced cyclic decision trees which are
useless for decision makings.

Figures 4, 5, 6 and 7 show the decision trees learnt by the
FDN, the BN, the Ltree and the C4.5 respectively. Since the
decision trees are very large, only parts of them are shown.
The FDN and the BN have learnt the acyclic decision trees
successfully. As the FDN can represent higher-order rela-
tionships, it does not need to enumerate the instances of the
combination of the parents and thus produced the smallest
decision trees. In contrast, both of the Ltree and the C4.5
were failed to learn decision trees with no cycle. For ex-
ample, the Ltree’s results show the values of history and
biology are determined by each other!

4 Conclusion

In this paper, we propose to use the MDLGP and the
FDN to learn acyclic decision trees for multi-class prob-
lems. BN can handle multi-class problems, but cannot han-
dle higher-order relationships and cannot illustrate parents’
importance. In contrast, decision trees can show parents’
importance, but can manage single-class problems only.
The FDN can handle all kinds of values; it guarantees to
produce decision trees with no cycle; it has smaller learning
search space; and it can represent higher-order relationships
among variables. The experiments demonstrated that the
proposed method can successfully learn the target acyclic
decision trees.
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Table 2. Results for Programm Selection.
Average(%) Best(%) Worst(%) Standard Deviation

MDLGP with FDN 92.24 93.84 91.26 0.01
history MDLGP with BN 76.58 78.79 73.94 0.02

Ltree 95.39 97.61 92.69 0.01
C4.5 84.31 85.80 81.90 0.01
MDLGP with FDN 91.15 93.94 88.18 0.02

biology MDLGP with BN 77.55 80.61 73.33 0.02
Ltree 96.10 97.46 94.63 0.01
C4.5 84.68 87.80 79.40 0.02
MDLGP with FDN 71.13 72.42 71.36 0.01

art or science MDLGP with BN 64.76 69.70 61.21 0.02
Ltree 71.00 72.54 68.06 0.01
C4.5 68.23 70.30 65.80 0.01

Figure 4. The decision trees learnt by the Functional Dependency Network for Programme Selection.

Figure 5. The decision trees learnt by the Bayesian Network for Programme Selection.
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Figure 6. The decision trees learnt by the Ltree for Programme Selection.

Figure 7. The decision trees learnt by the C4.5 for Programme Selection.

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00  © 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


