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Abstract

The Self-Organizing Map (SOM) is a powerful tool in the exploratory phase of data

mining. It is capable of projecting high-dimensional data onto a regular, usually 2-

dimensional grid of neurons with good neighborhood preservation between two spaces.

However, due to the dimensional conflict, the neighborhood preservation cannot always

lead to perfect topology preservation. In this paper, we establish an Expanding SOM

(ESOM) to preserve better topology between the two spaces. Besides the neighborhood

relationship, our ESOM can detect and preserve an ordering relationship using an

expanding mechanism. The computational complexity of the ESOM is comparable with

that of the SOM. Our experiment results demonstrate that the ESOM constructs better

mappings than the classic SOM, especially, in terms of the topological error. Further-

more, clustering results generated by the ESOM are more accurate than those obtained

by the SOM.
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1. Introduction

The Self-Organizing Map (SOM) has been proven to be useful as visuali-

zation and data exploratory analysis tools [6]. It maps high-dimensional data
items onto a low-dimensional grid of neurons. The regular grid can be used as a

convenient visualization surface for showing different features of data such as

the clustering tendencies of data [8,12,16]. SOMs have been successfully

applied in various engineering applications covering areas such as pattern

recognition, full-text and image analysis, vector quantization, regression,

financial data analysis, traveling salesman problem, and fault diagnosis

[3,4,6,7,10,14,18].

However, because a SOM maps the data from a high-dimensional space to a
low-dimensional space which is usually 2-dimensional, a dimensional conflict

may occur and a perfect topology preserving mapping may not be generated

[1,5]. For example, consider the two trained SOMs depicted in Fig. 1, although

they preserve good neighborhood relationships, the SOM depicted in Fig. 1(b)

folds the neuron string onto data irregularly and loses much topology infor-

mation in comparison with the SOM shown in Fig. 1(a).

There are many research efforts to enhance SOMs for visualization and

cluster analysis. Most of them focus on how to visualize neurons clearly and
classify data [3,14,16]. Some work concentrated on better topology preserva-

tion. Kirk and Zurada [5] trained their SOM to minimize the quantization

error in the first phase and then minimize the topological error in the second

phase. Su and Chang proposed a Double SOM (DSOM) that uses a dynamic

grid structure instead of a static structure used in the conventional SOMs. The

DSOM uses the classic SOM learning rule to learn a grid structure from input

data [12].

Motivated by an irregularity problem of SOMs and our previous work of
using SOM for traveling salesman problem [4], we propose a new learning rule

to enhance the topology preservation. The paper is organized as follows. We

outline the SOM techniques in the next section. We introduce our ESOM in

Section 3, followed by its theoretic analysis. The visualization and clustering
Fig. 1. Two SOMs from 2-dimensional space to 1-dimension. The connected dots indicate a string

of neurons, and other dots indicate data.
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results of the ESOM are presented and compared with the SOM in Section 4. A

conclusion is given in the last section.
2. Self-Organizing Map

The SOM consists of two layers of neurons. The neurons on the input layer

receive data ~xkðtÞ ¼ ½x1kðtÞ; x2kðtÞ; . . . ; xDkðtÞ�T 2 RDð16 k6NÞ at time t where
D is the dimensionality of the data space and N is the number of data items in

the data set. The neurons on the output layer are located on a grid with certain

neighborhood relationship. In this paper, the rectangular neighborhood is

used. The weight vector ~wjðtÞ ¼ ½w1jðtÞ;w2jðtÞ; . . . ;wDjðtÞ�T 2 RDð16 j6MÞ
indicates the jth output neuron’s location in the data space. It moves closer to

the input vector according to
Fig. 2
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~wjðt þ 1Þ ¼ ~wjðtÞ þ �ðtÞhj;mðtÞ½~xkðtÞ �~wjðtÞ�: ð1Þ
Here mðtÞ is the winning neuron, hj;mðtÞ is the neighborhood function, and �ðtÞ is
the learning rate and usually shrinks to zero. Fig. 2(a) illustrates this learning

rule. During learning, the SOM behaves like a flexible net that folds onto the
‘‘cloud’’ formed by the input data. It finally constructs a neighborhood pre-

serving map so that the neurons adjacent on the grid have similar weight

vectors. The SOM usually maps a high-dimensional data set to a low-dimen-

sional grid, so a dimensional conflict may occur in the trained SOM. Thus, the

neighborhood preserving map of the SOM is a good but usually not a perfect

topology preserving one.
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. A schematic view of two different learning rules. (a) The learning rule for the traditional

(b) The learning rule for the ESOM. A black disc indicates a data vector; a gray disc

es a neuron; a solid line indicates the neighbor relationship on the grid; a circle indicates the

sition of a neuron; a dashed circle indicates a neuron’s temporary position; a dashed arrow

es a movement direction; and �o’ indicates the origin, i.e., the data center.
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3. Expanding SOM

Besides the neighborhood relationship in the SOM, another topology rela-

tionship can be detected and preserved during the learning process to achieve a
better topology preserving mapping for data visualization. This is a linear

ordering relationship based on the distance between data and their center. A

neural network can detect and preserve this ordering relationship. If the dis-

tance between a data item and the center of all data items is larger, the distance

between the corresponding output neuron and the center is also larger. The

linear ordering relationship contains certain important topological informa-

tion. A typical example may be found in Fig. 1. Though two SOMs in Fig. 1(a)

and (b) have similar quantization errors, the left one certainly has less topo-
logical error. In other words, the left one visualizes the data set better.

In order to overcome such irregularity as in Fig. 1(b), we propose the Expand-

ing SOM (ESOM) to learn the linear ordering through expanding. The ESOM

can construct a mapping that preserves both the neighborhood and the ordering

relationships. Since this mapping preserves more topology information of the

input data, better performance in visualization can be expected.

We introduce a new learning rule to learn the linear ordering relationship.

Different from the SOM, the learning rule of the ESOM has an additional
factor, the expanding coefficient cjðtÞ, which is used to push neurons away from

the center of all data items during the learning process. In other words, the

flexible neural network is expanding gradually in our ESOM algorithm.

Moreover, the expanding force is specified according to the ordering of the

data items. In general, the larger the distance between the corresponding data

item and the center is, the larger is the expanding coefficient cjðtÞ. Conse-
quently, the associated output neuron is pushed away from the center and the

ordering of data items is thus preserved in the output neurons. For example,
the good topology preserving map in Fig. 1(a) can be achieved.

In the following sub-sections, the ESOM algorithm will be discussed first.

Theoretical analysis of the ESOM algorithm will then be described.
3.1. The ESOM algorithm

The ESOM algorithm consists of 6 steps.

(1) Linearly transform the coordinates ~x0i ¼ ½x01i; x02i; . . . ; x0Di�
T ði ¼ 1; . . . ;NÞ of

all given data items so that they lie within a sphere SR centered at the origin

with radius R ð< 1Þ. Here N is the number of data items, D is the dimen-

sionality of the data set. Hereafter, ½x1i; x2i; . . . ; xDi�T denotes the new coor-
dinate of ~xi. Let the center of all data items be ~x0C ¼ 1

N

PN
i¼1~x

0
i and the

maximum distance of data from the data center be Dmax, then
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~xi ¼
R

Dmax

ð~x 0
i �~x 0

CÞ 8i: ð2Þ
(2) Set t ¼ 0, and the initialize weight vectors ~wjð0Þ ðj ¼ 1; . . . ;MÞ with ran-

dom values within the above sphere SR where M is the number of output

neurons.

(3) Select a data item at random, say ~xkðtÞ ¼ ½x1k; x2k; . . . ; xDk�T, and feed it to

the input neurons.
(4) Find the winning output neuron, say mðtÞ, nearest to~xkðtÞ according to the

Euclidean metric:
mðtÞ ¼ argminjk~xkðtÞ �~wjðtÞk: ð3Þ
(5) Train neuron mðtÞ and its neighbors by using the following formula:
~wjðt þ 1Þ ¼ cjðtÞ~w0
jðt þ 1Þ¼D cjðtÞf~wjðtÞ þ ajðtÞ½~xkðtÞ �~wjðtÞ�g: ð4Þ

The parameters include:

• the interim neuron ~w0
jðt þ 1Þ, which indicates the position of the excited

neuron ~wjðtÞ after moving towards the input data item~xkðtÞ;
• the learning parameter ajðtÞ ð2 ½0; 1�Þ, which is specified by a learning

rate �ðtÞ and a neighborhood function hj;mðtÞðrðtÞÞ:
ajðtÞ ¼ �ðtÞ � hj;mðtÞðrðtÞÞ; ð5Þ

• the expanding coefficient cjðtÞ, which is specified according to

cjðtÞ ¼ ½1� 2ajðtÞð1� ajðtÞÞjjðtÞ��
1
2; ð6Þ

where jjðtÞ is specified by

jjðtÞ ¼ 1� h~xkðtÞ;~wjðtÞi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~xkðtÞk2Þð1� k~wjðtÞk2Þ

q
: ð7Þ

(6) Update the neighbor width parameter rðtÞ and the learning parameters �ðtÞ
with predetermined decreasing schemes. If the learning loop does not reach

a predetermined number, go to Step 3 with t :¼ t þ 1.

The first step facilitates the realization of the expanding coefficient cjðtÞ.
After the transformation, we can use the norm of a data item k~xkðtÞk to rep-

resent its distance from the center of the transformed data items since the

center is the origin. Thus, the norm k~xkðtÞk can indicate the ordering topology

in the data space. This ordering will be detected and preserved in k~wjðtÞk
through the expanding process.

The learning rule defined in Eq. (4) is the key point of the proposed ESOM

algorithm. Different from the SOM learning rule, it has an additional multi-
plication factor––the expanding coefficient cjðtÞ. This expanding coefficient is

greatly motivated by our work of applying SOM to the traveling salesman
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problem [4], where the expanding coefficient is defined in a 2-D space by virtue

of a unit sphere. Extending the formula for the 2-D case into a D-dimensional

space, we get Eq. (4).

It is worth pointing out that, although the expanding coefficient cjðtÞ is
relevant to all data items, the calculation of cjðtÞ depends on ajðtÞ; ~xkðtÞ and
~wjðtÞ. If cjðtÞ is a constant 1.0, the ESOM is simplified to a conventional SOM.

Since cjðtÞ is always greater than or equal to 1.0, the expanding force pushes

the excited neuron away from the center. In other words, the inequality

k~wjðt þ 1ÞkP k~w0
jðt þ 1Þk is always true. Fig. 2(b) illustrates the expanding

functionality. After moving the excited neuron ~wjðtÞ towards the input data

item~xkðtÞ, as indicated by ~w0
jðt þ 1Þ, the neuron is then pushed away from the

center. So, during the learning process, the flexible neuron net is expanding in
the data space. More interestingly, as the expanding force is specified

accordingly to the ordering relationships, distant data items are likely to be

mapped to the distant neurons, while data items near the center are likely to be

mapped to the neurons near the center of map, therefore, cjðtÞ can help us to

detect and preserve the ordering relationship. The expanding coefficient cjðtÞ is
also close to 1, which enables the ESOM to learn and preserve the neighbor-

hood relationship as the SOM does. We will give a theoretical analysis on this

point in the next sub-section.
There are several variations of SOM for better topology preservation, but

most of them are either computationally expensive or structurally complicated.

GSOM [11] needs to expand its output neuron layer gradually during learning.

However, the expansion of ESOM only happens on the output neurons’ weight

vectors, rather than the structure of output neuron layer. Besides finding the

nearest neuron for the input data item as in ESOM/SOM, GSOM also needs to

determine whether, where, and how a new output neuron has to be inserted.

The two-stage SOM [5] uses both a k-means algorithm and a partition error
based heuristic to improve the topography preservation. However, it causes a

great number of minor topological discontinuities. By incorporating the fuzzy

concept into the SOM, the Fuzzy SOM [13] is able to handle vague and

imprecise data, but it demands a high computational cost for the membership

functions. The tree-structured SOM [3] can generate a tree of SOM dynami-

cally, it can handle many difficult data sets but it spends almost twice longer

than the SOM [2].

3.2. Theoretical analysis

To show the feasibility of the ESOM, we should verify that the ESOM does

generate a map that preserves both the neighborhood and the ordering rela-

tionships. In this paper, we only give a theorem on a one-step trend to support

the feasibility of the ESOM because it is very difficult to prove the convergence
of the SOM-like networks in higher dimensional cases. In fact, it is still one of
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the long-standing open research problems in neural networks [9]. We will

perform a more rigorous convergence analysis in our future work if the con-

vergence analysis of the SOM is fulfilled. In the following theorem, we assume

that all input data items are located within the sphere SR and their center
coincides with the origin because the pre-processing procedure in Step 1 has

been executed.

Theorem 1. Let SR be the closed sphere with radius R ð< 1Þ centered at the
origin, f~xkðtÞ 2 SRg (for k ¼ 1; . . . ;N ) be the input data and f~wjðtÞg (for
j ¼ 1; . . . ;MÞ be the weight vectors of the ESOM at time t. Then, for any tP 0,

(i) for j 2 f1; 2; . . . ;Mg,
16 cjðtÞ6
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
p ; ð8Þ

and ~wjðtÞ 2 SR, that is,

k~wjðtÞk6R: ð9Þ

(ii) the expanding coefficient cjðtÞ increases with k~xkðtÞk when k~xkðtÞkP k~wjðtÞk.

Proof. (i) We prove Eqs. (8) and (9) together by induction. This is trivially true

for t ¼ 0 according to Step 2 of the ESOM algorithm. If we assume that both

equations hold for certain tðP 0Þ, then we find
1� jjðtÞ ¼ h~xkðtÞ;~wjðtÞi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~xkðtÞk2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~wjðtÞk2Þ

q

6

XD
d¼1

x2dkðtÞ
 

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~xkðtÞk2Þ

q� �2
!

�
XD
d¼1

w2
djðtÞ

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� j~wjðtÞk2Þ

q� �2
!

¼ 1:
Similarly,
1� jjðtÞ ¼ h~xkðtÞ;~wjðtÞi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~xkðtÞk2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~wjðtÞk2Þ

q
P � 1

2
ðk~xkðtÞk2 þ k~wjðtÞk2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R2Þ

p
P 1� 2R2:
Thus,
06 jjðtÞ6 2R2:
On the other hand, for any learning parameter ajðtÞ 2 ½0; 1�, the following

inequality is true:
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06 ajðtÞð1� ajðtÞÞ6 0:25:
According to Eq. (6), we get 16 cjðtÞ6 1ffiffiffiffiffiffiffiffi
1�R2

p . According to the ESOM learning

rule, we have
1� k~wjðt þ 1Þk2 ¼ ½½cjðtÞ��2 � k~wjðtÞ þ ajðtÞð~xkðtÞ �~wjðtÞÞk2� � ðcjðtÞÞ2

¼
ð1� ajðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k~wjðtÞk2

q
þ ajðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k~xkðtÞk2

q� �2
ðcjðtÞÞ�2

P
h
ð1� ajðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
þ ajðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p i2
¼ 1� R2: ð10Þ
This implies that k~wjðt þ 1Þk6R for any j ¼ 1; . . . ;M . Thus, by induction,
~wjðtÞ 2 SR for any j and t.

(ii) We rewrite~xkðtÞ and ~wjðtÞ as follows,

~xkðtÞ ¼ q�~exk ;

~wjðtÞ ¼ r �~ewj :
Here~exk and~ewj are two unit vectors, and q ¼ k~xkðtÞk and r ¼ k~wjðtÞk.
According to the assumption that qP r holds. Let
F ðqÞ ¼ h~wjðtÞ;~xkðtÞi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k~wjðtÞk2Þð1� k~xkðtÞk2Þ

q
¼ q � r � h~ewj ;~exk i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þð1� r2Þ

p
: ð11Þ
According to Eq. (6), it is obvious that F ðqÞ ¼ 1� 1�c�2
j ðtÞ

2ajðtÞð1�ajðtÞÞ. F ðqÞ decreases
with the expanding coefficient cjðtÞ. So, to justify the increasing property of
cjðtÞ, it is sufficient to show that F ðqÞ decreases with q whenever qP r. A direct

calculation shows
oF ðqÞ
oq

¼ r � h~ewj ;~exk i �
qffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

ð12Þ

6 r � q6 0: ð13Þ
This implies that the decreasing property of F ðqÞ on q when qP r. h

Theorem 1(i) says that the expanding coefficient cjðtÞ is always larger than or

equal to 1.0. In other words, it always pushes neurons away from the origin.

Thus, during learning, the neuron net is expanding. Furthermore, though the

expanding force is always greater than or equal to 1.0, it will never push the

output neurons to infinite locations. In fact, it is restricted by sphere SR in
which the data items are located. This point is substantiated by Eq. (9). In

other words, the expanding coefficient is never very large and enables the
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ESOM to learn the neighborhood relationships as the SOM does.This supports

the feasibility of the proposed ESOM.

Theorem 1(ii) gives a theoretic support that the ESOM aims to detect and

preserve the ordering relationship among the training data items. It points out
that the expanding coefficient cjðtÞ, or the expanding influence, is different for

various data items. The larger the distance between a data item and the center

of all data items is, the stronger the expanding force will influence on the

associated output neuron. Consequently, the output neurons are located in the

data space according to the linear ordering of their associated data items.

We now briefly discuss another interesting trend based on the proof pro-

cedure. If ~wjðtÞ is far away from~xkðtÞ, 1 h~ewj ;~exk i will be very small or even less

than 0. From Eq. (12), oF ðqÞ
oq � � qffiffiffiffiffiffiffiffi

1�q2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
6 0. In other words, the

expanding coefficient cjðtÞ increases with q which is the distance of the input

data item ~xkðtÞ from the center. So, the ordering of k~xkðtÞk is reflected in the

expanding coefficient cjðtÞ and then is learned by ~wjðtÞ. This also explains why

the topological error of the ESOM decreases more quickly than that of the

SOM at the beginning of learning. A typical example can be found in Fig. 4 in

Section 4.

In this paragraph, we derive the computation complexity of the ESOM
algorithm. Two differences between the ESOM and the SOM algorithms are

the pre-processing Step 1 and the learning rule. The computation complexity of

the pre-processing step is OðNÞ. The learning rule of the ESOM in Eq. (4) needs

a few extra arithmetic operations in comparison with the one of the conven-

tional SOM. Thus, the total computation complexity of the ESOM algorithm is

comparable with that of the SOM which is OðMNÞ [16].
4. Experimental results

We have examined the ESOM on 3 synthetic data sets and 2 real-life data

sets. Table 1 shows the properties of the five data sets. The first three synthetic

data sets are interesting in both their special cluster shapes and locations as

illustrated in Fig. 3. The conventional clustering algorithms such as K-means

and expectation–maximization (EM) are unable to identify the clusters. The

fourth data set, Mars, contains the temperatures taken from the Mars Path-

finder’s three sensors in different height. The fifth data set, Viking 2, contains
the measurements of solar longitude, wind speed, pressure, and tempera-

ture taken from the Viking Lander 2. The Mars and Viking 2 data sets are
1 The case is common at the beginning of learning since the weight vector ~wjðtÞ is randomly

initialized.



Table 1

Data sets properties

Data set No. of dimensions No. of records No. of classes

Data Set 1 2 3000 3

Data Set 2 3 2000 2

Data Set 3 3 3000 3

Mars 4 234 Unknown

Viking 2 7 29 225 Unknown
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downloaded from the web site ’’The Live from Earth & Mars’’ of University of

Washington (http://www-k12.atmos.washington.edu/k12/resources/mars_data-

information/data.html).

All data sets have been pre-processed by using the linear transformation

described in Eq. (2) in order to compare results fairly. The initial values of �, r,
and R are 0.5, 0.9 and 0.999 respectively. The values of a and r are decreased by

0.998 per iteration. Except for the Mars data set, we have used a rectangular

grid with 20 · 20 neurons. As there are not many data items in Mars data sets,
an output grid with 10 · 10 neurons is used. All experiments have been exe-

cuted for 2000 iterations.

Researchers have introduced several measures to evaluate the quality of a

mapping [1,17]. In this paper, we employ the topological error ET used in [5,15]

to evaluate the mapping obtained by our ESOM. ET is defined as the pro-

portion of the data items for which the closest and the second-closest neurons

are not adjacent on the grid. On the other hand, since the number of data items

is normally larger than the number of output neurons, the weight vectors in the
trained SOM become representatives of the original data set. The quantization

error evaluates how well the weight vectors represent the data set [5,16]. It is

specified as follows:
EQ ¼ 1

N

XN
k¼1

k~xkðtÞ �~wmk ðtÞk; ð14Þ
where mk is the winner for the data vector ~xkðtÞ. These two criteria usually

conflict in the SOM.
4.1. Results of 10 independent runs

We have performed 10 independent runs of both algorithms for the five data

sets. The average topological errors, the average quantization errors and the

average execution time are summarized in Tables 2–4, respectively.

On an average, the quantization errors of the ESOM for the three synthetic
data sets are 0.01767, 0.04753 and 0.05991, which are smaller than those of the

SOM. The average topological errors of the ESOM are 0.24088, 0.30215, and

http://www-k12.atmos.washington.edu/k12/resources/mars_data-information/data.html
http://www-k12.atmos.washington.edu/k12/resources/mars_data-information/data.html
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Fig. 3. Illustration of the three synthetic data sets, Data Set 1 (upper), Data Set 2 (middle) and

Data Set 3 (lower).
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Table 3

Average quantization errors based on 10 independent runs

Data set name ESOM SOM Improvement (%)

Data Set 1 0.01767 0.01800 1.80060

Data Set 2 0.04753 0.04832 1.64508

Data Set 3 0.05991 0.06042 0.83417

Mars 0.01308 0.01305 )0.22989
Viking 2 0.02370 0.02369 )0.04221

Table 2

Average topological errors based on 10 independent runs

Data set name ESOM SOM Improvement (%)

Data Set 1 0.24088 0.26039 7.49154

Data Set 2 0.30215 0.30555 1.11241

Data Set 3 0.33132 0.34763 4.69203

Mars 0.47059 0.53589 12.18534

Viking 2 0.79041 0.82103 3.72946

Table 4

Average execution times based on 10 independent runs

Data set name ESOM SOM Difference (%)

Data Set 1 2371.6 2283.2 3.87176

Data Set 2 2068.9 2051.2 0.86291

Data Set 3 2904.7 2872.1 1.13506

Mars 32.3 31.7 1.85758

Viking 2 4844.0 4704.0 2.89017
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0.33132 respectively. They are 7.49152%, 1.11241% and 4.69203% smaller than

those of SOM. In addition, the ESOM only needs little longer execution time as

listed in Table 4. Therefore, for the synthetic data sets, the ESOM generates

better mappings than the SOM in terms of both the topological and the

quantization errors with similar execution time.

For the first real-life data, the topological error of ESOM is 0.47059, which

is 12.18534% shorter than the value of the SOM, 0.53589. On the other hand,

the quantization error of ESOM is only 0.22989% larger than the one of the
SOM. Similar comparison is found for the second real-life data set, where the

ESOM makes 3.72946% improvement on the topological error and only

0.04221% loss on the quantization error. The gain on the topological error is

very obvious in comparison with the loss on the quantization error. Therefore,

using similar execution time, the ESOM can generate mappings with much

better topological errors than the SOM. The ESOM has similar quantization

errors as SOM.
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4.2. Typical results for the synthetic data sets

Fig. 4 illustrates the quantization and the topological errors during a typical

run on the first data set of both algorithms. It is clearly seen that the quanti-
zation error decreases gradually as the learning process continues. The quan-

tization error of the trained ESOM is 0.017 which is a bit smaller than that of

the trained SOM, 0.018. During learning, the decreasing, the increasing and the

converging stages can be observed in the topological error curve. At the very

beginning of the training process, the neuron’s weights are fairly different,

while some of them even contain remnants of random initial values, thus higher

topological errors are obtained. After executing several iterations, the topo-

logical error decreases dramatically. Because the learning rate � and the
neighborhood function are large, the neurons adjacent on the grid may move

much closer to the input data item together. At this stage, the ESOM can learn

the ordering topology of data items quickly. As shown in Fig. 4, the topo-

logical error of the ESOM is much smaller than that of the SOM. The final

topological errors of the ESOM and the SOM are 0.238 and 0.304 respectively,

ESOM gains about 20% improvement. Thus, the ESOM can generate better

topology preserving maps than the SOM.

Fig. 5 illustrates the trained ESOM and SOM for the first data set in the
form of U-matrix. The x-axis and the y-axis of the U-matrix indicate a neuron’s

position on the grid, and the z-axis is the average Euclidean distance of neurons

from its adjacent ones [3]. A sequence of consecutive peaks can be regarded as

a boundary among clusters, while the basins are regarded as clusters. There are

clearly two sequences of peaks in the ESOM’s U-matrix, which indicate three

clusters in the first data set. The layer structure in the data set is clearly

illustrated. In contrast, the boundaries in the SOM’s U-matrix is not so clear

because some high peaks blur the boundaries. The scatter plots shown in Fig. 6
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Fig. 4. The quantization error (left) and the topological error (right) during the learning of the

ESOM and the SOM for the first data set.
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Fig. 6. Scattered plot the trained ESOM (left) and the trained SOM (right) for the first data set.
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Fig. 5. U-matrix of the trained ESOM (left) and the trained SOM (right) for the first data set.

170 H. Jin et al. / Information Sciences 163 (2004) 157–173
illustrate data clusters on the grid. In the scatter plot, each marker represents a
mapping of a data item and the shape of the marker indicates its cluster label.

The marker is placed on the winning neuron of the data item. To avoid

overlapping, the marker has plotted with a small offset which is determined

according to the data item’s Euclidean distance from the winning neurons. The

ESOM maps data items in well-organized layers. We can easily find the three

clusters in its scatter plot which is quite similar with the original data set as

shown in Fig. 3. However, the SOM cannot map the data items very well. The

outer cluster in Fig. 3 is even separated into three sub-clusters (indicated by
�+’).

Fig. 7 illustrates the scatter plots of a typical run of both algorithms for the

second data set. The scatter plot of the ESOM clearly shows two clusters where

one cluster surrounds the other as in the original data set depicted in Fig. 3. In

contrast, the SOM separates one of the clusters in the original data set into two

clusters (represented by �Æ’).
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Fig. 8. U-Matrices of the ESOM (left) and the SOM (right) for the Mars data set.
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Fig. 7. Scatter plot the trained ESOM (left) and the trained SOM (right) for th second data set.
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4.3. Typical results for the real-life data sets

Fig. 8 illustrates the U-matrices during a typical run on the Mars data set of

both algorithms. By comparing all the data items and the weight values of all

the neurons in the trained ESOM and SOM respectively, we have found that

both of the algorithms are able to discover two clusters, but only ESOM can

show the boundary clearly in the U-matrix.

From the above experimental results and comparison, we conclude that the
ESOM can generate better topology preserving mappings than the SOM in

terms of both the topological error and quantization error. The ESOM is more

likely to identify the correct clusters from data sets than the SOM.
5. Conclusion

In this paper, we have proposed an Expanding Self-Organizing Map
(ESOM) to detect and preserve better topological correspondence between the
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input data space and the output grid. During the learning process of our

ESOM, the flexible neural net is expanding and the neuron corresponding to a

distant data item gets large expanding force. Besides the neighborhood rela-

tionship as in the SOM (Self-Organizing Map), the ESOM can detect and
preserve a linear ordering relationship as confirmed by our theoretical analysis.

Our experiment results have substantiated that, with similar execution time, the

ESOM constructs better visualization results than the classic SOM, especially,

in terms of the topological error. Furthermore, clustering results generated by

the ESOM are more accurate than those obtained by the SOM on both the

synthetic and the real-life data sets.

A rigorous theoretical analysis of the ESOM algorithm is subject to our

future work, which heavily relies on the convergence analysis of SOM. We are
also interested in applying the ESOM algorithm to large-scale and high-

dimensional data sets.
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